Diocese of Raleigh
Catholic Schools
7200 Stonehenge Drive
Raleigh, NC 27613
www.dioceseofraleigh.org

Math II Standards Diocese of Raleigh

August 2017

THE DIOCESE OF RALEIGH
 MISSION OF THE CATHOLIC SCHOOLS

The mission of the Diocese of Raleigh is to engage our school/preschool communities in creating a quality education within a
Catholic environment that fosters the current and future development of the whole child.

DIOCESE OF RALEIGH CATHOLIC SCHOOLS: A FOUNDATION FOR LIFE

"School is one of the educational environments where one grows by learning how to live, how to become grown-up, mature men and women...Following what St. Ignatius teaches us, the main element in school is learning to be magnanimous...This means having a big heart, having a greatness of soul. It means having grand ideals, the desire to achieve great things in response to what God asks of us and, precisely because of this, doing everyday things, all our daily actions, commitments, and meetings with people well. [It means] doing the little everyday things with a big heart that is open to God and to others." Pope Francis \{Excerpts from Pope Francis: Speech address on June 7, 2013 on the importance of Catholic education in schools in Italy and Albania in the Paul VI Audience Hall.\}

Math

Values \& Attitudes

Catholic Schools exist so that curriculum may be taught in the light of Gospel teachings. Teachers are encouraged to reinforce Gospel truths and values so that students may serve as witnesses to their Catholic faith. The values listed will assist students to develop a critical conscience in every content area. Values and attitudes are not necessarily quantifiable but rather identified in a student's respect toward the content area.

1. All people are created with minds and the gift to reason.
2. God made each of us as a unique individual.
3. Recognize our talents and share them with one another in order to do God's will.
4. There is a definite sense of order, balance and symmetry in God's universe.
5. God's world is composed of recognizable spacing, measurement and geometric design.

Mathematical Practices

"These standards describe student behaviors, ensure an understanding of math and focus on developing reasoning and building mathematical communication. Each standard has a unique focus, but each also interweaves with the others as we put them into practice. These practices empower students to use math and to think mathematically. Our job as teachers is to help students develop these practices to become effective mathematicians."

National Council of Teachers of Mathematics

1) Make sense of problems and persevere in solving them.
2) Reason abstractly and quantitatively.
3) Construct viable arguments and critique the reasoning of others.
4) Model with mathematics.
5) Use appropriate tools strategically.
6) Attend to precision.
7) Look for and make use of structure.
8) Look for and express regularity in repeated reasoning.
9) Use inductive and deductive reasoning. (Diocese of Raleigh - DOR)

Diocese of Raleigh Math II Curriculum Revision Team:

- Joan Troy - Cardinal Gibbons High School
- Siobhan Brown - St. Michael Catholic School
- Denise Leuci - St. Mark Catholic School, Wilmington
- Melissa Miller - St. Patrick Catholic School
- Jill Scanlin - St. Raphael Catholic School
- Leigh Sutton - St. Mary Catholic School, Goldsboro
- Patsy Thieken - The Franciscan School
- Stephanie Bell - St. Mark Catholic School, Wilmington
- Charles Hite, Jr. - St. Mary Catholic School - Wilmington
- Leah Iyer - Cardinal Gibbons High School
- Ursula Karazin - Cardinal Gibbons High School
- Kimberly Browning, AssistantSuperintendent

	Competency Goal 1:	Math II
The learner will solve quadratic equations and identify key features of quadratic functions.		
Objectives:		
1.01 Review factoring quadratics of the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, solving quadratic equations by factoring, and solving quadratic equations by taking the square root	1.08 Analyze quadratic functions by key features including domain and range, intercepts, increasing and decreasing intervals, positive and negative intervals, rate of change, extreme values, symmetries and end behavior	1.15 Complete quadratic regressions using appropriate data
1.02 Understand the result of operations with complex numbers, especially expressed as solutions to a quadratic equation	1.09 Determine the direction of a parabola based upon the leading coefficient	1.16 Build a quadratic function based on a graph, a table, or a description
1.03 Recognize the difference between exact, simplified, and approximate answers, especially when it comes to irrational answers obtained in solving quadratic equations	1.10 Use the discriminant to determine the nature of solutions	1.17 Compare and contrast quadratic functions with other function, either looking at two functions of the same type or two different functions in all three forms - numerical, graphical and algebraic
1.04 Solve quadratic equations by completing the square	1.11 Use the vertex form of a quadratic equation to determine the vertex and AOS	1.18 Solve and apply systems of equations involving quadratic and linear equations

1.05 Solve quadratic equations by using the Quadratic Formula, getting both exact and approximate answers	1.12 Use the standard form of a quadratic to find the zeroes of the function	1.19 Determine transformations of quadratic functions
1.06 Explain solving process for an equation, including the reason a certain method was chosen for solving the equation	1.13 Use a calculator to find zeroes and the vertex	1.20 Graph quadratic inequalities of the form $\mathrm{y}<\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ or $\mathrm{y}>\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$
1.07 Solve and apply one-variable models based on quadratic equations	1.14 Devise two variable models using quadratic functions, including projectile motion	1.21 Graph quadratic inequalities of the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}<0$ or $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}>0$ (Honors)
	Competency Goal 2:	Math II
The learner will solve radical equations and identify key features of square root and cube root (honors) functions.		
Objectives:		
2.01 Determine the defining characteristic of rational and irrational numbers	2.05 Solve radical equations and identify extraneous solutions	2.09 Analyze radical functions (square and cube root) by key features including domain and range, intercepts, increasing and decreasing intervals, positive and negative intervals, rate of change, extreme values, symmetries and end behavior
2.02 Review and extend all operations with radicals and complex numbers, including division using conjugates	2.06 Explain solving process for an equation, including the reason a certain method was chosen for solving the equation	2.10 Determine transformations of radical functions
2.03 Define rational exponents and extend use of the rules of exponents to include rational exponents	2.07 Solve and apply one-variable models based on radical equations	2.11 Solve problems involving two variable models using radical functions (or functions with rational exponents)

2.04 Simplify expressions with radicals	2.08 Represent radical functions as graphs, tables and equations	2.12 Solve and apply systems of equations involving square root, quadratic and linear equations
	Competency Goal 3:	Math II
The learner will solve inverse variation equations and identify key features of inverse variation functions.		
Objectives:		
3.01 Explain solving process for an equation involving inverse variation, including the reason a certain method was chosen for solving the equation	3.04 Identify the placement of an asymptote in an inverse variation function.	3.07 Solve and apply systems of equations involving square root, quadratic, inverse variation, and linear equations.
3.02 Solve and apply one-variable models based on inverse variation equations	3.05 Determine transformations of inverse variation functions.	
3.03 Analyze inverse variation functions ($y=$ $\frac{k}{x}$) by key features including domain and range, intercepts, increasing and decreasing intervals, positive and negative intervals, rate of change, extreme values, symmetries and end behavior	3.06 Solve problems involving two variable models using inverse variation functions	

| | | Competency
 Goal 4: |
| :--- | :--- | :--- | :--- |
| The learner will explore transformations of generic parent functions. | | |\quad Math II

The learner will use Geometry to perform transformations in a plane.

Objectives:		
5.01 Relate a rigid transformation or a series of rigid transformations to congruence of a figure	5.05 Describe transformations as a new type of function that maps ordered pairs to ordered pairs	5.09 Work experimentally with properties of rotations, reflections and translations including reflections across parallel lines and the equivalence of rotations with reflections
5.02 Perform transformations in the plane, including reflections, rotations, translations, and dilations	5.06 Describe transformations using matrix operations (honors)	5.10 Use coordinate geometry to verify congruent distances, as well as parallel and perpendicular relationships in transformations

6.05 Show that two polygons are similar using the definition of similar figures	6.10 Show why AAA and SSA criteria are not sufficient to prove that two triangles are congruent	
	Competency Goal 7:	Math II
The learner will apply right triangle trigonometry to solve problems.		
Objectives:		
7.01 Use similarity to prove the Pythagorean Theorem	7.06 Evaluate and solve expressions and equations involving trigonometric functions	
7.02 Use the Pythagorean Theorem to measure triangle sides and its converse to classify triangles	7.07 Use relationships in special right triangles	
7.03 Apply the Pythagorean Theorem to real world problems	7.08 Solve for missing sides and angles in right triangles	
7.04 Relate the Pythagorean Theorem to the distance formula	7.09 Apply methods of trigonometry to real world problems	
7.05 Develop the relationship that leads from similar right triangles to right triangle trigonometry definitions		

		Competency Goal 8:
The learner will apply the principles of probability to real-world events.		

